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Abstract--This paper makes a theoretical analysis of the propagation phenomena of the small amplitude 
pressure wave in the subsonic and supersonic bubble flow with a velocity slip between bubble and liquid in 
the convergent-divergent nozzle. From an analysis of the time-mean flow, the nondimensional parameter 
m={u~.a( l -a)pL[3(2-1/S) /P.[a[3S+(l-a)$S2+a(l -a)]}  112 corresponds to Mach number is gas- 
dynamics where uG is the gas velocity, a: the void fraction, PL: the liquid density, P: the pressure, S: the 
velocity ratio of the gas and liquid flows and/3: the proportional constant for the virtual mass. From a 
theoretical analysis of the small disturbance field, it is clarified that the parameter m also plays an essential 
and important role as Mach number, although the propagation performance of the disturbance is very 
complicated compared with that in gasdynamics. It is also shown that the pressure waves are divided into 
four groups depending on the velocity ratio S. Two of them are rather realistic, hut the other two are 
required of a further investigation in future. 

1. INTRODUCTION 

An analysis of the high speed bubble flow is important in connection with the flow-out accident 
of tube breaking of the water-cooled nuclear reactor and also with acceleration of a liquid by 
boiling of other volatile liquid in the liquid metal MHD power generator. A study of the 
propagation phenomena of pressure wave in the bubble flow where a relative speed exists 
between the gas and liquid phases shall be important in regard to behaviors of the pressure 
wave in the liquid lithium in the blanket of the pulse operating fusion reactor in the far future. 
Generally, the critical flow rate in a convergent-divergent nozzle and the propagating velocity 
of small amplitude pressure wave is closely related. For the inviscid gas flow, the relation 
between them is well known to be expressed by such the very simple form as M = 1 at the 
nozzle throat, where M is Mach number, to mean the gas critical velocity being equal to the 
sound one. On the other hand, in the two-phase bubble flow when a slip velocity exists between 
the phases, the definition of Mach number is not clear, nor has there been known any detailed 
investigation to give the relation between the critical flow condition and the propagating 
velocity of the pressure wave. It is considered that difficulties of the investigation lie in the fact 
that in the two-phase flow the large density of liquid and compressibility of gas are related with 
the pressure wave velocity, and that there exist two typical flow velocities; bubble velocity and 
liquid velocity. Many investigations have been done concerning the one-dimensional bubble 
flow, and typical studies are reviewed in Wijingaarden's report (1972). In his report, papers in 
regard to pressure waves in the bubble flow taking the dynamical behavior of bubble into 
consideration, flows in the Laval nozzle and waves of finite amplitude are summarised. But, the 
effect of the slip velocity between the bubble and liquid on the small amplitude pressure wave 
has not been considered. Although Wijingaarden considered the effect of the slip velocity on the 
nozzle flow in his review, the momentum equation for the fluid is considered not to be correct. 
Recently, Prosperetti & Van Wijingaarden (1976) analysed the characteristic velocity of the 
bubble flow in case of the slow relative velocity between the bubble and liquid flows, and 
compared them with the experimental value obtained from the critical flow rate reported by 
Muir & Eichhorn (1963). 
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In their calculation, the inertia force of liquid was used as the external force acting on the 
bubble, and the propagation phenomena of the pressure wave in the so called subsonic and 
supersonic bubble flow in a local point of the convergent-divergent nozzle were studied. The 
propagation velocity of small disturbance was theoretically analysed by using the small 
amplitude approximation, and the relation between the critical condition and the propagation 
velocity of disturbance was discussed. However it is considered that the assumption of small 
slip velocity is not always realized in the convergent-divergent nozzle, especially in the 
divergent section. 

The purpose of this paper is to make a theoretical investigation of the propagation 
phenomena of the small amplitude pressure wave in general. It is clarified that a parameter 
corresponding to Mach number in gasdynamics is introduced as the most important and 
essential one and that quite different from the performance of pressure waves in gasdynamics 
the pressure waves in bubble flows are divided into four groups depending on the slip velocity 
between the bubble and liquid flows. 

2. FUNDAMENTAL EQUATIONS 

A one-dimensional bubble flow in a channel such as the convergent-divergent nozzle with the 
sectional area A(x) is considered, the x axis being taken in the flow direction. Bubble radii r 
are uniform in a cross section and bubbles are considered to disperse homogeneously in the 
flow, and not to coalesce with each other. The conservation law for the bubble number density n 
is expressed by 

D (hA) = - nA OuG 
DtG ~x ' [ 1 ] 

where t is time. The derivative of the left term expresses the substantial derivative with respect 
to the gas phase velocity ~ and is expressed as follows 

D ~ 0 
DtG = -~ + UG "~. [2] 

Assuming this bubble flow as a two-component flow, the mass conservation law of gas phase is 
expressed as 

D 4 po) = O, [3] ,rr 

where p~ is the density of gas. By taking the sectional mean of this equation and using void 
fraction a(= n.~Irr3), we have 

+0 
~t apc, A) ~x(apouGA) = O. [4] 

Next, the equation of motion of the bubble is considered. When the Reynolds number (Re) based 
on the relative velocity is less than lO 3, the bubble keeps a spherical shape, and the following 
equation is obtained, 

D 4 (-~ 7rr 3 pGUG ) = ~4 __~_~OP 34 D 
- ~ r  - ~r 3/3pL bV~(uo-  uL) 

DtÜ 

• Dr CD 
- 47rr2/~p, (uc - uLrff~ - "-~ ~rr2pL(u~ - uL) 2, [5] 
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where uL is the liquid velocity, P: the pressure, pL: the liquid density, and CD: the resistence 
coefficient of bubble being expressed by 48/Re when Re is less than 103. The terms of [5] 
excepting the last one of the r.h.s, are obtained under the assumption of potential flow around a 
sphere which is reasonably accepted in the flow around a spherical gas bubble (Harper 1972). 
The full derivation of the equation is shown in the Appendix. The l.h.s, of [5] is the inertia force of 
gas phase which can be neglected compared with the other terms in the bubble flow region. The 
first term in the r.h.s, is the force acting on the bubble due to the pressure gradient and is 
replaced by the inertia force of liquid ~Irr 3 PL (DutJDt6) as shown in Prosperetti (1976). The 
second term is the force acting on the bubble by virtual mass caused by change of the relative 
motion, and the third term is that by another virtual mass effect caused by the radius increase 
rate where fl is a coefficient, and is 1/2 for a single bubble in infinite liquid (Lamb 1932). The 
dependence of fl on the bubble interval is reported by Van Wijingaarden (1976), but its 
dependency is weak, and /~ is assumed constant. In the two-phase flow in the convergent- 
divergent nozzle, because of the rapid change of sectional area of the nozzle, the forces by 
virtual mass are larger compared with the viscous force, therefore, the last term in the r.h.s, of 
[5] can be neglected. 

Then, [5] is expressed as follows, using a void fraction a, 

~t OI~pL(UG UL)A}+ 0 -- - ~  {OI[~pL(14G -- UL)IIGA} -- aA Op = 0. [6] 
Ox 

The continuity equation of liquid phase is given as 

~t(1 - a)pLA} + 8--~-{x (1 - Ot)pLIILA } = O. [7] 

The momentum equation of the whole two-phase flow is expressed as, 

0 + 8  
[8] 

Being compared with the pressure gradient force, the wall friction can be neglected. Since the 
ratio of mass flow rate of gas phase to that of liquid phase is very small, the first and the 3rd 
terms of [8] can be neglected. As thermal conductivity and heat capacity of liquid are much 
larger than those of gas, the gas temperature considered to be kept equal to the liquid 
temperature, which is assumed constant. Therefore, the equation of state of gas is 

P 
- -  = constant. [9] pG 

It has not been made clear whether this assumption of isothermal process is applicable for the 
whole frequency range. Plesset (1964) pointed out it can be accepted for very high and low 
frequency ranges. In this report, as the frequency dependence of acoustic velocity is not 
discussed, the assumption of isothermal process is adapted. For liquid phase, the density OL is 
assumed constant. 

3. STEADY NOZZLE FLOW 
In an analysis of the relation between the flow velocity and the pressure wave propagating 

velocity, the high speed bubble flow is taken up and the velocity slip effect is taken into 
account, because it predominates in a highly accelerating flow such as the convergent-divergent 
nozzle flow. Assuming a steady flow and the shape of nozzle being given by a function of x, [4] 
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and [6]--[8] construct the simultaneous differential equations for ua, uL, a and P, and they are 
given as 

d i n  uG = - -  

d i n  ua - 

d i n  a - 
dx 

1 1 -----~ [(I [ 3 S + ( l - a )  m2(S-  1) 
- a)[3S: + a~S  + a(l  - a) a ( 2 S -  l) ] d ln A" 

1 { /3S z } d l n A .  
1 - - ~  il - a)BS2+ aBS+ a( l  - a)  

1 [ ( 1 - a ) { S ( S - l ) f l - ( l - a ) }  m 2 ( l -  a ) ]  d 
1 -m-~ [ i J~a ) - j -~  ~ ~fl-ff~ a-(J - - -~ 4 In A. 

--L--l S d InP = In A. 
dx 1 - m 2 [ a (2S  - 1) 

[10] 

[111 

[12] 

[13] 

Here, the velocity ratio S is udu£, and the nondimensional parameter m is given as 

[ u2p£a(1 - a)/3(2S - 1) I l/: 
m = LPS{(1 - a)[3S 2 + aBS + a(1 - a)}J " [141 

On the other hand, in case of the gas flow in a nozzle, corresponding to [10] and [13] we have 

d 1 d In A [15] In uo 1 - M 2 dx " 

InP  = 1 21nA. [16] 

Here, M is the Mach number, and y is the ratio of specific heats. 
Comparing [15] and [16] with [10]-[13], it is necessary for the term l - m :  in the denomina- 

tors of the fundamental equations to vanish at the throat of the nozzle. However, there leaves a 

question whether the nondimensional parameter m just given by [14] expresses the Mach 
number which is defined as the ratio of flow velocity and sound velocity or pressure wave 
propagating velocity. Also, it is not sure whether m < 1 in the convergent section upstream the 
throat means subsonic nor is it sure whether m > 1 in the divergent section means supersonic. 
This problem will be discussed afterwards. If the fundamental equations [10]-[13] are rewritten 
in terms of pressure changes instead of the axial coordinate, we have 

d l n u G  = a ( 2 S - l ) {  [ 3 S + ( 1 - a )  * m 2 ( S - l ) ]  d , 
dx rn2S ( l _ a ) [ 3 S : + a [ 3 S + a ( l _ a ) - , a ( 2 S _ l ) ~ x m r ,  [17] 

d (1 - m 2 ) a ( 2 S -  1) d 
d--x In A = m2 S d--x In P ,  f18] 

and singularity at m = 1 can be avoided. Instead, the condition to make m = 1 at the throat must 
be added. 

By making use of [17] and [18] numerical calculation can be carried out for a convergent- 
divergent nozzle. In place of the ideal inlet condition such as mi = 0, A J A * =  oo at the 
stagnation condition, a calculation was started at the point of A.JA* = 100, where At and A* are 
the sectional areas of the nozzle at the inlet and the throat, respectively. At this point m 2 is 
approx. 10 -4. By taking the velocity ratio S as unity and by making the iterative assumption of 
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the nondimensional parameter m at this inlet, calculation was made along the nozzle until m = I 
was satisfied at the throat. This result for the inlet void fraction ai = 0.1 is shown in figure 1 as 
a typical example. The horizontal axis is the nondimensional value m and in the vertical axis 
udu*, uo/u*, P/P* and A/A* are taken when the asterisk shows the value at the throat• 
The gas velocity was made nondimensional by the liquid velocity at the throat to prove the 
existence of velocity difference in the nozzle flow. Decrease in udu* at the divergent part, 
as seen in figure 1, is due to increase in the force of virtual mass due to the rapid bubble expansion 

by pressure decrease. These bubble and liquid velocity distributions well correspond to those of 
Muir's experimental results (1963). 

4. PROPAGATION OF PR ESSUR E WAVE 

Velocity of small amplitude wave propagating in a steady flow is analysed by the assumption of a 
one dimensional field. Hydrodynamical values are divided into mean and perturbed terms and are 
written as follows: 

uG(x, t) = uco(x) + ub exp {i(kx - tot)}, [191 

ut(x, t) = ULo(X) + u~. exp {i(kx - tot)}, [201 

a(x, t) = ao(X) + a '  exp {i(kx - tot)}, [211 

P(x, t) = P,,(x) + P' exp {i(kx - tot)}, [221 

where to is the angular velocity of disturbance and k is the complex wave number. Substituting 
the above equation [4], [6], [7] and [8], the equations for mean values and perturbed values 
are obtained respectively. The equations for mean values are identical with fundamental 
equations mentioned in the preceding chapter. 

When the wave length becomes of the same order as the length of the nozzle, the assumption 
of the one dimensional fiat wave of small disturbance is broken. As the characteristic length of 
the nozzle is considered to be [d lnA/dx] -~, the following condition must be introduced to the 
wave number. 

ooc  , 0.5 I I.h5 ,0 
m 

Figure 1. Relations among nondimensional pressure (P/P*), nondimensional gas velocity (uc,/uZ), non- 
dimensional liquid velocity (uduZ), nondimensional sectional area (A/A*), void fraction (a) and non- 
dimensional parameter ra along the convergent-divergent nozzle when at =0.1 and ~ = 0.5 (----) and 
//--*~ ( ~ ) .  rn < 1, rn = 1 and m > 1 are corresponding to convergent part, throat and divergent part of the 

nozzle, respectively. 
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[k] >> [~x In A ] • [23] 

Since the wave length is short under this condition, the derivative of the mean values to the 
flow direction can be neglected and in the equations for the perturbed valued and the complex 
wave number has only the real part, because the imaginary part expresses the attenuation in the 
flow direction. 

Under such conditions as mentioned above, [41, [6], [7] and [81 for the perturbated terms are 
linearized by use of [19], [20] and [22] as follows: 

{~t t t 

( ~o+kuao)~+(-o~+ P - kuo~po + kuto u o =  0 
ULo 

[24] 

I t t 

+ + . , : k  "o _tO~u~_{_oJ+kuoo}UL + kP' =0, 
\ULo / uLo 3U~pL 

[25] 

° 
- ( - o~ + k u , ~  ° + k . ~ o ~  = O, [26] 

kP' = O. [27] 
( - to + ku)~ 4 (1 - no)pLuto 

In [24]-[27], such the condition that a', P', ub and uL have non-trivial solutions is given by the 
following equations. 

( l) ,, 
( -A + 1)(-  SA + 1) 2 -A + 2 -  - m2{aoflS2+(1 -ao)flS3+ao(1 - a0)S} 

• { a o f l S ( - S A + l ) ( - A + l ) + ( 1 - a o ) f l S 2 ( - A + l ) 2 + a o ( l - a o ) ( - S A + l ) 2 } = O ,  [28] 

where 

A = ~o/(kuc, o) = C/uoo, [29] 

which expresses the propagation velocity C of small amplitude wave made nondimensional by 
the gas velocity. S and m in [28] are those used in the preceding section and express the 
velocity ratio and the nondimensional parameter defined by [14], respectively. The propagation 
velocity C can be obtained from [28] if the void fraction ao, velocity ratio S and nondimen- 
sional parameter m are given at a point of the flow. The propagation velocities of such a small 
amplitude wave obtained above are identical with that obtained as the characteristics dx/dt of 
the unsteady particai differential equations [4] and [6]-[8]. To clarify the features of the 
propagation velocity of small amplitude wave, first, a simple case is taken up. When S = 1, [28] 
becomes very simple and the solution is given as follows: 

1 
A = 1 (equal root), A = 1 4 , [30] 

' - ms=l 

whereas 

[ pLU%2aO(1--OtO) l 1/2 
m s = l  = m e q  = [Po{1 - ( a o ( 1  - O t o ) / f l ) }  J " 

[31] 
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Putting m,q = u~/a, and by expressing [30] by the dimensional propagation velocity C, we have 

C = UC, o = ULo, C = u~ o +- a, [321 

whereas 

[Po{ 1 + (ao(1 - ao)[[3)}] 1/2 

a = t  J " 
[33] 

The former duplicated solution in [32] is a trivial solution having a main flow velocity and the 
latter express the waves propagating in the downstream and upstream directions riding on the 
flow. The value of a by [33] agrees with the sound velocity in the flow field without a uniform 
flow as reported by Crespo (1969) and by Hijikata & Mori (1974). It is well understood that the 
propagation velocities expressed by the latter form of [32] means that the superposition of flow 
and sound velocities is realized since a small amplitude approximation is used in the analysis. 

Under the same condition, Prosperetti (1976) gave the following propagation velocity of small 
amplitude wave 

a = [Po{1 + (ao/ /3)}]  I/2 

I. pLOto(1--ao) J " 
[341 

The difference between [33] and [34] is caused by the different expressions of the external force 
on the bubbles as already mentioned. 

Secondly, the case when S e  1 is going to be discussed. In the nozzle flow, as mentioned 
above, there is a velocity difference between gas and liquid phases in general. In this case, the 
exact solutions of [28] must be obtained. The I.h.s. of [28] is rewritten as the 4th power equation 
of ;t as follows; 

f(A) = bo+ bmA + b2A 2 + b3A 3 + b4A 4 , [351 

where 

1 ( S  + 1) b ,=  - 4 S - 1 + 1 +  2 ( 2 - - ~ ) { C t o l S S ~ + ( 1 - a o ) f l S  2 

+ %(1 - Cto)S}/[m2{ao[3S + (1 - ao)[3S 2 + %(1 - ao)}], 

b2 = 2 S 2 + 5 S - 1 - (2 - 1)$2{3 + ao (1 - ao)}/[m 2{aoflS + (1 - ao )3S 2 + ao (1 - %)}1, 

b3 = - 3 S  2 - S ,  

b 4 ~ S 2 . 

One of the important parameters include in [35] is m, which is defined by [14] in the 
analysis of the mean flow field in the nozzle. It should be emphasized that the same parameter. 
m plays the important role in the analysis of performances of mean flow and disturbance in 
the bubble flow just as in the gas flow. Effects of m on the solution of A are investigated in the 
following. As in the case of S = 1/2, the forces of virtual mass caused by the relative velocity 
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and the force by expansion cancels each other, the effect of interia force of gas phase becomes 
relatively large. Hence the assumption introduced previously and used in the analysis becomes 
invalid. However, the case of S = 1/2 seldom occurs in practice, and S is usually larger than 
unity in the accelerating flow such as the one in the convergent-divergent nozzle as shown in 
figure 1, and in the following investigation cases for S > 1/2 are discussed. 

For m > 1 and S > 1/2, the coefficients bi of A satisfy the following conditions: 

bo. b2, b4 > 0: b l ,  b3 < 0 .  [36] 

Taking into consideration the fact that the value at A = 0 of the n th derivative of f with respect 
to ,t is n !b,, it is known from [36] that the real root of/(A) = 0 is all in the domain of A > 0. 
According to the definition of A, the positive value of A indicates the wave moving on to the 
downstream. Therefore, the fact mentioned above means that waves in the region of m > 1 all 
propagate downstream, and none propagates upstream. This fact corresponds to the per- 
formance of sound wave in the supersonic flow of gas. 

When m = 1, b0 in [35] becomes definitely zero independent of a0 and/3, and ,t = 0 is the 
solution indicating the existence of stationary disturbance standing in the space. In the case of 
m < 1, as b0 < 0 and b4 > 0 it is seen that there exists at least one solution for A < 0, meaning 
that there definitely exists a wave propagating upstream which corresponds to a sound wave 
going upstream in the subsonic gas flow. 

As explained above and understood from behaviors of disturbance propagating in the 

two-phase flow field, it is seen that the nondimensional parameter m defined in [14] corresponds to 
the Mach number in the gas flow. Also, as seen from[10] through[13], for a steady one 
dimensional flow in the convergent-divergent nozzle, m is equal to unity when d A / d x  = O. 

From these results, it may be appropriate to consider the nondimensional parameter m as 
Mach number in the two-phase bubble flow having velocity difference between gas and liquid 

phases. However, although the Mach number in the gas flow indicates the ratio of flow velocity to 
sound velocity, the parameter m in the two-phase flow may not be defined simply by the ratio of 
flow velocity to sound velocity. To make this point clear, the solution of [34] is numerically 
obtained and discussed in the following. 

As the dependence of b0, bl, b2, b3, b4 given by[35] on the void fraction is examined to have 
no peculiar or singular behaviors, a calculation is made in the case of u0 = 0.5 for an example. 

2 - } I  

~ r~0 .6  
.0 2 - I /S ~ -  . . . .  

o 1 . . . . . . . .  ~-><~ - . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

II 0 f / ' n 2 ~  ,.< 

I I 
-0"5.5 1 115 2 2J.5 

5 

Figure 2. Relations among nondimensional propagation velocities (C/ue~), velocity ratio ( u a J u ~  and non- 
dimensional parameter in are shown by solid lines ( - - )  when ao = 0.5 and ,8 = 0.5. Dotted lines ( . . . .  ) are 

corresponding to the equilibrium case (/3 ~ z). 
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The result of ,~ = C[uG with m and the velocity ratio S as parameters is shown in figure 2 for 

/3 = 1[2. The vertical axis expresses the nondimensional propagation velocity )t, and the 
horizontal axis is the velocity ratio S of gas and liquid. The dotted lines in the figure are A = 1 
and A = I/S, which are the nondimensional gas and liquid velocities, respectively. There exist 
four kinds of waves as shown in figure 2, and two outside the lines of A = 1 and I /S  and the other 
two between them. The formers are indicated by Groups I and II and the latters by Groups A and B. 

Group I denotes waves moving faster than either gas velocity (,~ = 1) or liquid velocity 
(A = I/S) and Group II slower ones. For m > 1, as can be seen from the figure, A is always 
positive and the fast and slow waves go downstream. For m < 1, only the slow wave goes upstream 
as A is negative. The wave of Group II going upstream for m = 1 is stationary relative to the 
nozzle as A = 0. 

There exist the other two wave groups indicated by Groups A and B in figure 2. Groups A and 
B expressed by the solid lines lying between )t = 1 and I[S in the figure are of particular interest 
to us. The waves of these two groups move only downstream and do not appear unless the 
velocity difference of two phases becomes very large. In other words, in the case of small 
velocity difference, i.e. S being almost equal to unity, these waves do not appear unless m is 
very large. There have been no papers reporting on these Groups A and B. Further detailed 
theoretical or experimental studies shall be made in future. 

With the increase of m, as seen in figure 2, the four groups of waves approach the curves of 
A = 1, I /S  and 2-1 /S .  Groups I and II and those of A and B correspond each other. By 
expressing the propagating velocity of the fast wave as C+, that of the slow wave as C_, the 
velocity of fluid carrying the waves as U and the propagating velocity of the waves relative to 
the fluid as V, we have 

U = (C+ + C_)/2, 

V = (C+ - C_)12. [37] 

As seen from figure 2, Groups I and II are carried down almost with the velocity of gas phase 
and Groups A and B with the intermediate velocity of gas and liquid phases. Although even in 
the high speed bubble flow in a conventional nozzle the slip ratio may not be much different 
from unity, these waves satisfying this condition are of interest and should be investigated in 
details in future. 

2 - -  

D 

c_/o~o 

,.~ 
' , ]1.04 * 

1.0 "~ 
- 1  i i 

0.5 rn 2 1.5 2 2.5 

Figure 3. Relations among nondimensional propagation velocities (Clue, o) a n d  v e l o c i t y  ratio (uoo/u~) a n d  

square of nondimensional parameter m along the nozzle when aoi = 0.01. Solid lines show the equilibrium 
case (//--, 2). White circles (©) and dotted lines ( . . . .  ) and black circles (@) are obtained by numerical 

calculation for fl = 0.5 and fl = 103, respectively. 
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In figure 3, as an example, the propagation velocities of the fast and slow waves are 
calculated for the flow field of a convergent-divergent nozzle. The calculation was done using 
[17] and [18]. The horizontal axis indicates the nondimensional parameter m, while the vertical 
axis indicates the ratio on the cross section area (A/A*) and the nondimensional propagation 
velocity A. The solid line in the figure expresses the solution for/3 = o0, i.e. S = I, where the gas 
and liquid phases move with the same velocity. The black circle and the white circle indicate the 
numerical values for/5 - 1000 (not a practical value but taken up to study the effect of/3) and 0.5 
respectively. In the convergent part of the nozzle, m is smaller than unity and the slow wave 
propagates upstream (,~ <0). In the divergent part m > I and the waves propagate only 
downstream (,~ > 0). Also, m = 1 holds at the throat of the nozzle and the solution of A > 0 exists. In 
other words, for m < 1 the flow may be called subsonic, and for m > 1 supersonic. In this particular 
case, the velocity difference of the phases is not big enough, therefore the waves of Groups A and B 
do not appear. 

5. CONCLUSION 
In this paper a theoretical analysis of the subsonic and supersonic two-phase bubble flow in the 

nozzle with a velocity slip between phases has been made. 
From an analysis of the time-mean flow it is found that the nondimensional parameter m defined 

by[14] including the void fraction and the velocity slip ratio S plays the same role as Mach number 
in gasdynamics. A numerical calculation for a convergent-divergent nozzle reveals that the force 
of virtual mass due to the rapid bubble expansion by pressure decrease is very important in the 
accelerating supersonic flow. 

A theoretical analysis of the small disturbance field reduces a conclusion that m is also the most 
important parameter. The performance of the nondimensional propagation speed relative to the 
nozzle is divided into four groups depending on m and S as shown in figure 2. Groups I and II in the 
figure are realistic corresponding to the performance of the sound wave in gasdynamics. Groups A 
and B disappear when the velocities of two phases approach each other, i.e. S is nearly unity and 
have a peculiar characteristic which should be investigated in detail in future. 
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APPENDIX 

Forces on a sphere in a potential flow of a pressure gradient. 
The following potential is proved to express an inviscid incompressible flow around an 

expanding sphere. 

R s r 2 R s 2RS~_ R s 
#a=-UoR---~-ua[~r2COsO]-u,[(¢-~-'~+'-~-3-~] (r +~-~) cos 0 

/3r= Rs\ 2 0 ] j, [A1] 

where r and 0 are spherical coordinates fixed at initial positions of the sphere, R is the radius of 
the sphere, uo, u~ and uL are the expanding velocity of the sphere, the uniform velocity of 
sphere and the main velocity at the initial position which is not constant along the flow direction 
to give the pressure gradient ~ is the distance between the initial position of sphere and the 
source of the main flow. The velocity components in the r and 0 directions are given as follows 
from [Al]. 

r R s R s 
V, = - u L [ (  ~ Oa + 2 ~--~)- ( 1 - ~RS) c°sO'[3r+ t--{ - -~-]cos3R'\ 201 

R 3 R 2 

[3-r+ 2 R ' ]  ] +  R3 . vo uL[ ( l + ~--p;s ) sin O- \ : er4 : OsinO u~ = -  cos [ sm O ]. [A2] 

The velocities at the surface (V,e, VOR) and far from.the sphere (V,=, Vo=) are 

Vroo = uL (~ + cos O - 3 ~ cos 2 0 ) ,  

Vo®=uL(-sinO+3~cosOsinO), 

V,R = u~ COS 0 + Uo, 

V,o = uL ( - ~ sin o + 5 R cos O sin O ) + ? sin O. [A3] 

It is easy to understand that the [A3] coincides with the velocities around the sphere located in 
the uniform inviscid flow when t e ~ .  

By considering the new coordinate whose origin is fixed at the center of the bubble, following 
relations are obtained geometrically., 

Or 00 _ uo sin 0. [ A 4 ]  a--t = u~ cos 0, a--t = r 

Therefore, the partial derivative of the potential can be written as follows, 

a$ d4, .a4 , .  ua . ~a,~ 
0-7 = d"-'t'- U°COS v - ~ + - - s l n  v--~ 

r 
[A5I 
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where ~b is given by [Al]. For the irrotational motion of a liquid, the pressure is expressed as 
follows, 

O Ot I VI2 + G(t). [A61 

The first and second terms in the r.h.s, of [A6] can be obtained from [AI], [A2] and [AS]. 
Here, the pressure is expanded into power series of cos 0 as 

P = Po(t) + Pl(t) cos 0 + PE(t) cos 2 0... [A7] 

If the pressure gradient in the flow direction is not so large, the terms higher than the first order 
may be neglected. As the zero order term has no effect on the force the flow direction acting on 
the sphere, we only consider the P,(t) of [A7]. From the calculation of the r.h.s, term of the [A6], 

P, at the surface of the sphere (P,R) and far from the sphere (Pl~) are obtained as follows, 

PIR 3R duL R du~ , 3 
p 2 dt ~--2--d~-U°~UL-U~ ' 

P,~ _ R duL 
p dt ' [A8] 

where Uo = dR[dt. The force to the flow direction acting on the sphere is obtained from surface 
integration of [AS]. 

Fz = - P,R 2 IrR2 sin 0 cos 0 d0 

2 dt ~ lrR3(uL- ua) 4 OP 

where z is the distance from the center of the sphere along the flow direction. 


